Note

5- and 4-(D-lyxofuranosyl)pyrazoles: a new type of pyrazole *C*-nucleoside

Manuel Gómez-Guillén and José María Lassaletta Simon

Departamento de Química Orgánica "Profesor García González", Universidad de Sevilla, Apartado de Correos No. 553, 41071 Seville (Spain)

(Received May 26th, 1992; accepted July 7th, 1992)

C-Nucleosides and their analogues constitute targets in organic synthesis because of their biological and pharmacological properties. A convenient route to this type of compound involves the well-known acid-catalysed cyclodehydration of polyhydroxyalkyl chains bonded to heterocycles¹⁻⁸. Thus, in the presence of trifluoroacetic acid as catalyst, 3-(D-manno- or D-galacto-pentitol-1-yl)pyrazole (1 or 2) was dehydrated^{9,10} to give 3-(D-arabinofuranosyl)- (3) or 3-(D-lyxofuranosyl)-pyrazole (4), respectively, in moderate to good yields. To the best of our knowledge, 1-substituted pyrazole C-nucleosides having the sugar moiety at C-5 or C-4 have not yet been described and we now report their preparation.

The starting compounds used for the cyclodehydration were 1-methyl (or phenyl)pyrazole derivatives having a D-galacto-pentitol-1-yl chain at C-5 (5 and 6) or at C-4 (7). These compounds were prepared¹¹ by deacetylation of the respective penta-O-acetyl derivatives (8–10) obtained¹¹ by the reaction of aldehyde methyl (or phenyl)hydrazones with the readily available 3,4,5,6,7-penta-O-acetyl-1,2-dideoxyl-nitro-D-galacto-hept-1-enitol.

Heating of aqueous solutions of 5-7 severally with an excess of CF_3CO_2H led to the (D-lyxofuranosyl)pyrazole derivatives 11-13, respectively, as α,β -mixtures or, for 13, a unique product. The furanoid character of 11-13 was shown by the consumption of only 1 mol of periodate, as observed for the 3-substituted analogues 4. The α,β -ratios found (NMR data) were 60:40 for 11 and 65:35 for 12, in agreement with the greater steric hindrance expected for the β -D-lyxofuranosyl than for the α isomers. Configurations were assigned on the basis of the chemical shifts of the H-1' resonances and the $J_{1',2'}$ values. Thus, the δ values for the H-1' resonances of the α isomers 11 α and 12 α (4.87 and 4.71 ppm,

Correspondence to: Profesor M. Gómez-Guillén, Departamento de Química Orgánica "Profesor García González", Universidad de Sevilla, Apartado de Correos No. 553, 41071 Seville, Spain.

respectively) were lower than those for the corresponding β isomers 11β and 12β (5.07 and 4.93 ppm, respectively), as described 12,13 for D-lyxofuranose derivatives, and the $J_{1',2'}$ values for 11α and 12α (8.3 and 8.6 Hz, respectively) were outside the range reported 13 for cisoid protons, whereas those for 11β and 12β were much lower (4.7 and 5.2 Hz, respectively). For 13, H-1' gave a signal at δ 4.92 (d, $J_{1',2'}$ 4.4 Hz) that allowed the β configuration to be assigned tentatively. The reason why only the β anomer of 13 is formed may be the marked decrease of steric hindrance in comparison with 11β and 12β , due to the absence of a substituent at position 3 or 5 of the pyrazole ring, i.e., adjacent to the C-nucleosidic bond.

The triacetate (14) of 11α had a $J_{1',2'}$ value of 7.1 Hz which confirmed the α -D-furanoid structure.

The fragmentation pattern observed in the mass spectra of 11-13 was similar to those described^{9,10,14} for other C-nucleosides. For 11β , 12α , and 12β , the base peak corresponded to M^+ , but the ion $[B+CHOH]^+$, where B connotes the pyrazole moiety, also had a high abundance and, for 13, was the base peak. The

RON₂C ONN
RON₂C ONN
N
HOH₂C ONN
N
HOH₂C ONN
N
HO
OH

110c,
$$\beta$$
 R¹ = Me, R = H
120c, β R¹ = Ph, R = H
14 α R¹ = Me, R = Ac

mass spectrum of the triacetate 14 showed features similar to those of the spectra of other acetylated C-nucleosides 14,16,17 .

EXPERIMENTAL

General methods.—Solvents were evaporated in vacuo at < 45°C. Melting points were determined with a Gallenkamp MFB-595 apparatus and are uncorrected. Optical rotations were measured with a Perkin-Elmer 241 MC polarimeter. IR spectra were recorded with a Perkin-Elmer 299 spectrometer for films or KBr discs. The ¹H and ¹³C NMR spectra were recorded with a Varian XL-200 spectrometer. EI-mass spectra (70 eV) were obtained with a Kratos MS-80 RFA instrument with the ion-source at 200°C. The composition of molecular ions was confirmed by accurate mass measurements at a resolving power of ~ 10 000 (10% valley). Consumption of periodate was determined by a method based on that of Fleury and Lange¹⁸.

Cyclodehydration of the (pentitol-1-yl)pyrazoles 5-7.—To a warm solution of 5-7 (0.75 mmol) severally in water (20-40 mL) was added CF_3CO_2H (0.5-0.6 mL), and the mixture was boiled under reflux for 48-96 h, then concentrated. The residue was subjected to column chromatography (10:1 CH_2Cl_2 -MeOH) on Silica Gel 60 (Merck, 63-200 μ m).

3-(p-Anisyl)-5-(α - and β -D-lyxofuranosyl)-1-methylpyrazole (11 α and 11 β).—Application of the general procedure to 5 (0.25 g) afforded 5 (96 mg, 38%) and a mixture (120 mg, 51%) of 11 α and 11 β (60:40, ¹H NMR data), which was resolved by preparative TLC (5:1 CH₂Cl₂-MeOH) on Silica Gel PSC-60 F₂₅₄ s (Merck).

Compound 11 α (66 mg, 28%) had mp 146–147 °C (from MeOH); $[\alpha]_{\rm D}^{24}+31^{\circ}$ (c1, pyridine); $\nu_{\rm max}$ 3320 (OH), 1610 (phenyl), 1570 (pyrazole C=N), and 1515 cm⁻¹ (phenyl). NMR data: 1 H [(CD₃)₂SO + D₂O], δ 7.77 (d, 2 H, $J_{o,m}$ 8.6 Hz, m-H), 7.05 (d, 2 H, o-H), 6.72 (s, 1 H, H-4), 4.87 (d, 1 H, $J_{1',2'}$ 8.3 Hz, H-1'), 4.35 (dd, 1 H, $J_{2',3'}$ 4.0 Hz, H-2'), 4.2 (m, 2 H, H-3',4'), 3.90 (s, 3 H, Me-1), 3.85 (s, 3 H, MeO), 3.76 (dd, 1 H, $J_{4',5'a}$ 5.0, $J_{5'a,5'b}$ 11.4 Hz, H-5'a), and 3.64 (dd, 1 H, $J_{4',5'b}$ 5.9 Hz, H-5'b); 13 C [(CD₃)₂SO], δ 159.5 (C-4 of p-anisyl), 149.1 (C-3), 144.6 (C-5), 127.1, 126.3 (C-1,2 of p-anisyl), 114.8 (C-3 of p-anisyl), 101.5 (C-4), 81.8, 77.3, 74.2,

71.7 (C-1'/4'), 60.8 (C-5'), 55.8 (MeO), and 37.4 (Me-1). Mass spectrum: m/z 322 (1%, [M + 2]+), 321 (9, [M + 1]+), 320 (37, M+), 302 (1, [M - H₂O]+), 231 (12, [BCH₂CHOH]+), 230 (35, [BCH₂CHO]+), 217 (25, [BCHOH]+), 216 (51, [BCHO]+), 201 (51, [BCH₂]+), 189 (7, [B + 2]+), and 187 (12, [B]+). Periodate consumption, 0.99 mol. Anal. Calcd for $C_{16}H_{20}N_2O_5$: C, 60.00; H, 6.29; N, 8.74. Found: C, 59.83; H, 6.40; N, 8.66.

Conventional treatment of 11α (50 mg) with pyridine (0.5 mL) and acetic anhydride (0.5 mL) for 48 h at 0°C, with preparative TLC (10:1 ether-hexane) of the product on Silica Gel PSC-60 F₂₅₄ s, gave the 2,3,5-triacetate 14 (60 mg, 86%), isolated as a colourless syrup; $[\alpha]_D^{25} + 63^\circ$ (c 1, CHCl₃); ν_{max} 1740 (ester C=O), 1605 (phenyl), 1570 (pyrazole C=N), 1510 (phenyl), and 900 cm⁻¹ (pyrazole ring bending). NMR data (CDCl₃): 1 H, δ 7.64 (d, 1 H, $J_{o,m}$ 8.9 Hz, m-H), 6.88 (d, 1 H, o-H), 6.42 (s, 1 H, H-4), 5.65 (dd, 1 H, $J_{2'3'}$ 4.6, $J_{3'4'}$ 4.5 Hz, H-3'), 5.59 (dd, 1 H, H-2'), 5.12 (d, 1 H, $J_{1',2'}$ 7.1 Hz, H-1'), 4.53 (ddd, 1 H, $J_{4',5'a}$ 6.6, $J_{4',5'b}$ 5.5 Hz, H-4'), 4.31 (dd, 1 H, $J_{5'a}$ 5'h 11.6 Hz, H-5'a), 4.22 (dd, 1 H, H-5'b), 3.91 (s, 3 H, Me-1), 3.80 (s, 3 H, MeO), 2.15, 2.05, and 2.03 (s, 9 H, 3 Ac); 13 C, δ 170.5, 169.5, 169.4 (3 CH₃CO), 159.2 (C-4 of p-anisyl), 150.0 (C-3), 139.9 (C-5), 126.6, 125.7 (C-1, 2 of p-anisyl), 113.8 (C-3 of p-anisyl), 101.0 (C-4), 76.3, 74.4, 72.5, 71.0 (C-1'/4'), 62.0 (C-5'), 55.1 (MeO), 36.9 (Me-1), 20.6 and 20.4 (3 CH₃CO). Mass spectrum: (a) m/z 448 (4%, $[M+2]^+$), 447 (21, $[M+1]^+$), 446 (84, M^+), 404 (9, $[M-1]^+$) $CH_2=C=O]^+$), 386 (3, [M - AcOH]⁺), 285 (3, [M - AcOH - AcO - $CH_2=C=O]^+$), 284 (4, $[M-2 AcOH-CH_2=C=O]^+$), 267 (100, $[M-3 AcOH+H]^+$), 217 (19, $[BCHOH]^+$), 216 (17, $[BCHO]^+$), 201 (11, $[BCH_2]^+$), 189 (3, $[B+2]^+$), and 187 (4, [B]⁺); (b) m/z 446.1694 (calcd for $C_{22}H_{26}N_2O_8$: 446.1689).

Compound 11 β was isolated as a colourless syrup (43 mg, 18%); $[\alpha]_D^{25} + 14^\circ$ (c 1, pyridine); ν_{max} 3300 (OH), 1610 (phenyl), 1565 pyrazole C=N), and 1510 cm⁻¹ (phenyl). NMR data: ${}^{1}\text{H}$ [(CD₃)₂SO + D₂O], δ 7.77 (d, 2 H, $J_{o,m}$ 8.9 Hz, m-H), 7.05 (d, 2 H, o-H), 6.69 (s, 1 H, H-4), 5.07 (d, 1 H, $J_{1',2'}$ 4.7 Hz, H-1'), 4.42 (dd, 1 H, $J_{2',3'}$ 5.0, $J_{3',4'}$ 6.2 Hz, H-3'), 4.35 (dd, 1 H, H-2'), 4.04 (m, 1 H, $J_{4',5'a}$ 3.8, $J_{4',5'b}$ 5.4 Hz, H-4'), 3.92 (s, 3 H, Me-1), 3.88 (s, 3 H, MeO), and 3.7 (m, 2 H, H-5'a,5'b); ${}^{13}\text{C}$ [(CD₃)₂SO], δ 159.1 (C-4 of p-anisyl), 148.6 (C-3), 142.2 (C-5), 126.7 (C-1,2 of p-anisyl), 114.6 (C-3 of p-anisyl), 103.3 (C-4), 80.1, 75.4, 72.2, 72.0 (C-1'/4'), 60.5 (C-5'), 55.6 (MeO), and 37.6 (Me-1). Mass spectrum: (a) m/z 322 (3%, [M + 2]+), 321 (19, [M + 1]+), 320 (100, M+), 302 (2, [M - H₂O]+), 231 (13, [BCH₂CHOH]+), 230 (20, [BCH₂CHO]+), 217 (53, [BCHOH]+), 216 (51, [BCHO]+), 201 (25, [BCH₂]+), 189 (18, [B + 2]+), and 187 (11, [B]+); (b) m/z 320.1423 (calcd for C₁₆H₂₀N₂O₅: 320.1373). Periodate consumption, 0.90 mol.

3-(p-Anisyl)-5-(α - and β -D-lyxofuranosyl)-1-phenylpyrazole (12 α and 12 β).—Application of the general procedure to 6 (0.30 g) gave 6 (0.12 g, 40%) and a mixture (0.13 g, 45%) of 12 α and 12 β (65:35, ¹H NMR data), which was resolved by TLC as described for 11 α and 11 β .

Compound 12 α (76 mg, 26%) was isolated as a colourless syrup, $[\alpha]_D^{23} + 36^\circ$ (c 1, CHCl₃); ν_{max} 3300 (OH), 1605, 1590 (phenyl), 1570 (pyrazole C=N), 1510 and 1495

cm⁻¹ (C=C and C=N aromatic). NMR data: 1 H [(CD₃)₂SO + D₂O], δ 7.90 (d, 2 H, $J_{o,m}$ 8.9 Hz, m-H of p-anisyl), 7.8–7.5 (m, 5 H, Ph), 7.14 (s, 1 H, H-4), 7.11 (d, 2 H, o-H of p-anisyl), 4.71 (d, 1 H, $J_{1',2'}$ 8.6 Hz, H-1'), 4.53 (dd, 1 H, $J_{2'3'}$ 4.0 Hz, H-2'), 4.2 (m, 2 H, H-3',4'), 3.89 (s, 3 H, MeO), 3.72 (dd, 1 H, $J_{4',5'a}$ 5.0 $J_{5'a,5'b}$ 11.4 Hz, H-5'a), and 3.58 (dd, 1 H, $J_{4',5'b}$ 6.0 Hz, H-5'b); 13 C [(CD₃)₂SO], δ 159.6 (C-4 of p-anisyl), 151.1 (C-3), 144.5 (C-5), 139.5 (C-1 of Ph), 129.7, 128.4, 127.1 (C-2,3,4 of Ph), 125.8, 125.2 (C-1,2 of p-anisyl), 114.7 (C-3 of p-anisyl), 103.4 (C-4), 81.6, 77.4, 73.2, 71.4 (C-1'/4'), 60.6 (C-5'), and 55.6 (MeO). Mass spectrum: (a) m/z 384 (4%, [M + 2]+), 383 (25, [M + 1]+), 382 (100, M+), 364 (6, [M - H₂O]+), 293 (19, [BCH₂CHOH]+), 292 (41, [BCH₂CHO]+), 279 (69, [BCHOH]+), 278 (44, [BCHO]+), 263 (34, [BCH₂]+), 251 (11, [B + 2]+), and 249 (10, [B]+); (b) m/z 382.1510 (calcd for C₂₁H₂₂N₂O₅: 382.1529). Periodate consumption, 0.95 mol.

Compound 12 β was isolated as a syrup (20 mg, 14%), $[\alpha]_D^{25} + 15^\circ$ (c 1, CHCl₃); ν_{max} 3300 (OH), 1610, 1590 (phenyl), 1575 (pyrazole C=N), 1515 and 1495 cm⁻¹ (C=C and C=N aromatic). NMR data: ^1H [(CD₃)₂SO + D₂O], δ 7.86 (d, 2 H, $J_{o,m}$ 8.8 Hz, m-H of p-anisyl), 7.7–7.5 (m, 5 H, Ph), 7.10 (d, 2 H, o-H of p-anisyl), 7.06 (s, 1 H, H-4), 4.93 (d, 1 H, $J_{1',2'}$ 5.2 Hz, H-1'), 4.35 (dd, 1 H, $J_{2',3'}$ 4.9, $J_{3',4'}$ 5.9 Hz, H-3'), 4.21 (dd, 1 H, H-2'), 3.98 (ddd, 1 H, $J_{4',5'a}$ 4.2, $J_{4',5'b}$ 5.4 Hz, H-4'), 3.91 (s, 3 H, MeO), 3.81 (dd, 1 H, $J_{5'a,5'b}$ 11.3 Hz, H-5'a), and 3.70 (dd, 1 H, H-5'b); ^{13}C [(CD₃)₂SO], δ 159.2 (C-4 of p-anisyl), 150.4 (C-3), 142.7 (C-5), 139.7 (C-1 of Ph), 129.5, 128.3, 126.8 (C-2,3,4 of Ph), 125.9, 125.3 (C-1,2 of p-anisyl), 114.4 (C-3 of p-anisyl), 105.4 (C-4), 80.5, 74.5, 72.1, 71.7 (C-1'/4'), 60.1 (C-5'), and 55.4 (MeO). Periodate consumption, 0.97 mol. Mass spectrum: m/z 382.1515 (calcd for $C_{21}\text{H}_{22}\text{N}_2\text{O}_5$: 382.1529).

4-(β-p-Lyxofuranosyl)-1-phenylpyrazole (13).—Application of the general procedure to 7 (0.22 g) gave 7 (64 mg) and 13 (0.12 g, 58%); mp 120–122 °C (from MeOH); $[\alpha]_D^{25}$ + 11° (c 1, pyridine); ν_{max} 3480, 3250 (OH), 1600 (phenyl), 1575, 1565 (pyrazole C=N), 1500 (phenyl), and 900 cm⁻¹ (pyrazole ring bending). NMR data: 1 H [(CD₃)₂SO + D₂O], δ 8.47 (s, 1 H, H-5), 8.0–7.3 (m, 5 H, Ph), 7.83 (s, 1 H, H-3), 4.92 (d, 1 H, $J_{1',2'}$ 4.4 Hz, H-1'), 4.46 (dd, 1 H, $J_{2',3'}$ 4.9, $J_{3',4'}$ 6.7 Hz, H-3'), 4.11 (dd, 1 H, H-2'), 4.00 (ddd, 1 H, $J_{4',5'a}$ 4.0, $J_{4',5'b}$ 4.9 Hz, H-4'), and 3.8–3.6 (m, 2 H, H-5'a,5'b); 13 C [(CD₃)₂SO], δ 141.4 (C-3), 139.9 (C-1 of Ph), 129.7 (C-3 of Ph), 127.0, 126.0 (C-4 of Ph and C-5), 121.4 (C-4), 118.1 (C-2 of Ph), 80.0, 74.7, 72.3, 72.1 (C-1'/4'), and 60.2 (C-5'). Mass spectrum: m/z 277 (1%, [M + 1]⁺), 276 (7, M⁺), 258 (50, [M – H₂O]⁺), 187 (5, [BCH₂CHOH]⁺), 186 (12, [BCH₂CHO]⁺), 173 (100, [BCHOH]⁺), 172 (12, [BCHO]⁺), 157 (41, [BCH₂]⁺), 145 (5, [B + 2]⁺), and 143 (1, [B]⁺). Anal. Calcd for C₁₄H₁₆N₂O₄: C, 60.86; H, 5.84; N, 10.14. Found: C, 60.79; H, 5.91; N, 9.96.

ACKNOWLEDGMENTS

We thank the Dirección General de Investigación Científica y Técnica (D.G.I.C.Y.T.) for financial support (Project PB87-0454), and the Consejería de Educación y Ciencia de la Junta de Andalucía for a predoctoral fellowship.

REFERENCES

- 1 J. Baddiley, J.G. Buchanan, and B. Carss, J. Chem. Soc., (1957) 4138-4139.
- 2 M. Bobek, J. Farkas, and F. Sorm, Collect. Czech. Chem. Commun., 34 (1969) 1673-1683.
- 3 R. Barker, J. Org. Chem., 35 (1970) 461-464.
- 4 U. Lerch, M.G. Burdon, and J.G. Moffatt, J. Org. Chem., 36 (1971) 1507-1513.
- 5 A. Gómez Sánchez and M.A. Rodríguez Roldán, Carbohydr. Res., 22 (1972) 50-62.
- 6 A. Gómez Sánchez, E. Toledano and M. Gómez Guillén, J. Chem. Soc., Perkin Trans. 1, (1974) 1237-1247.
- 7 J.G. Buchanan, M.E. Chacón-Fuertes, and R.H. Wightman, J. Chem. Soc., Perkin Trans. 1, (1979) 244-248.
- 8 J.A. Galbis Pérez, P. Areces Bravo, F. Rebolledo Vicente, J.I. Fernández García-Hierro, and J. Fuentes Mota, *Carbohydr. Res.*, 176 (1988) 97-106, and references therein.
- 9 M. Gómez Guillén, J.M. Lassaletta Simon, M.E. Martín Zomaro, and I. Robina, *Carbohydr. Res.*, 201 (1990) 233-240.
- 10 M. Gómez Guillén and J.M. Lassaletta Simon, Carbohydr. Res., 211 (1991) 287-294.
- 11 M. Gómez Guillén and J.M. Lassaletta Simon, Carbohydr. Res., 210 (1991) 175-189.
- 12 C.K. Chu, F.M. El-Kabbani, and B.B. Thompson, Nucleosides Nucleotides, 3 (1984) 1-31.
- 13 J.D. Stevens and H.G. Fletcher, Jr., J. Org. Chem., 33 (1968) 1799-1805.
- 14 M.A.E. Sallam, Carbohydr. Res., 85 (1980) 93-105.
- 15 L.B. Townsend and R.K. Robins, J. Heterocycl. Chem., 6 (1969) 459-464.
- 16 O.S. Chizhov, N.K. Kochetkov, N.N. Malysheva, A.I. Shiyonok, and V.L. Chaskchin, Org. Mass Spectrom., 5 (1971) 1145-1155.
- 17 M.A.E. Sallam, Carbohydr. Res., 67 (1978) 79-89.
- 18 P.F. Fleury and J. Lange, J. Pharm. Chem., 17 (1933) 107-114; 196-208.